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Autonomous Distant Visual Surveillance of Satellites

John E. McInroy, Senior Member, IEEE, Lawrence M. Robertson and R. Scott Erwin

Abstract— This paper develops three new, interconnected tech-
niques useful for the autonomous distant visual inspection of
satellites. First, silhouetting of man made, erratically illuminated
satellites is performed. Illumination cases include full sun from
an arbitrary (often awkward) viewing angle and un-illuminated
(back-lit by the star field). New Statistical Straight Line Snakes
(SSLS) prove efficient in finding the silhouette, even in the un-
illuminated case. The silhouette is composed of straight line
segments, which are easy to calculate, fit the straight lines
inherent in man made objects, and lend themselves to further
processing (pose estimation, template matching, etc.) Once the
silhouette has been used to find correspondence points, a second
method for detecting a moving, nearby chaser vehicle is derived.
The hard case is treated in which the chaser and satellite are so
nearby that their images are blurred together. The algorithm
finds the dimension of motion generated by the sequence of
images. If the dimension is higher than that explained by a single
rigid body, then this indicates a possible chaser. No knowledge of
the satellite or chaser’s shape or motion is required. Independent
relative motion between the satellite and chaser is required–
if the chaser is immobile with respect to the satellite, then a
third technique must be used. This third method incorporates the
satellite’s solid model to estimate its pose from a noisy, diffraction
limited image. The pose is then combined with the solid and
optical model to create synthetic expected images. Inspection
is performed by comparing these with the actual images. The
new pose algorithm first estimates depth by a least upper bound
technique. A fast method is derived of optimally estimating the
rotation matrix by a sequence of analytical solutions (rather than
a nonlinear numerical optimization!). Simulations illustrate the
use of all three techniques on images obtained when viewing low
Earth orbit satellites from the ground.

Index Terms— affine cameras, pose estimation, visual servoing,
template matching, object recognition, motion subspace

I. INTRODUCTION

Visual surveillance of satellites presents new challenges and
opportunities for computer vision. The distance between an
Earth based telescope and a satellite is great, which implies
that the images are often blurry due to the effects of the
atmosphere, diffraction, etc. Moreover, illumination is erratic
and harsh, varying from a very sharp contrast, to partial
illumination, to un-illuminated but back-lit by stars. Finally,
the objectives are somewhat different. For instance, it may
be of interest just to detect that any body is in the image.
Alternatively, it may be desired to know if a single blurry
image contains multiple bodies.
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This paper develops three new, complementary tools for the
distant visual surveillance of satellites. First, silhouetting of
man made, erratically illuminated space objects will be per-
formed. Second, methods for detecting multiple independently
moving, visually overlaid bodies will be found. Third, methods
for inspecting known satellites will be derived.

Finding the silhouette of spaceborne objects is useful for
both detecting the presence of an object and for finding
correspondences between images and models. When viewing
from Earth, sun illumination plays a significant role, as it
can be very harsh, partial, or even completely missing. The
un-illuminated case is particularly unique, as much can still
be done due to back lighting by stars. Traditional gradient
based edge detectors ([9], [10]) fail utterly in the unilluminated
case. More recent contour growing (”snake”) techniques ([17],
[14], [1], [3]) are more promising. This paper develops a
new Statistical Straight Line Snake (SSLS) algorithm which
is simple and naturally fits man made objects with their
preponderance of straight edges. It directly outputs lines and
vertices ready for use in correspondence, pose, and template
matching algorithms.

Nearby moving objects are always a concern for satellites.
Unfortunately, visual evaluation from Earth can be difficult
due to blurry images caused by diffraction, atmospheric,
and scaling effects. Satellites are in constant motion: is the
motion seen in an image caused by a single satellite, or are
multiple bodies present? This paper modifies a robotic motion
segmentation algorithm [18] to answer this question. No model
of the motion, satellite, or other objects is required.

On the other hand, relative motion between the multiple
bodies is required. To inspect known satellites, and especially
to detect bodies immobile with respect to the satellite, a
new affine camera pose estimation algorithm is derived. Once
the pose is found, it is combined with optical models and
solid satellite models to predict the image. Large differences
indicate an anomaly.

Despite the availability of many pose estimation algorithms
(see [11] [4] [6] [15], [8], and [2] for starters), there remains
a need for a rapid, optimal, dependable algorithm suitable for
a small number of point correspondences (but more than n =
4). For instance, [16] recently added high bandwidth inertial
sensing to complement the available pose estimation because
it alone had too low of a bandwidth. For the case of affine
imaging, this paper develops a new method that is closed form,
yet provides optimal estimates even when n > 4. It does so
by solving the standard 3d-3d optimal orientation problem 2n

times, where n is the number of data points. Since the optimal
orientation problem can be very quickly solved as a 4 x 4
matrix eigenvalue problem, the overall computational burden
is light. A least upper bound estimate of the scaling (depth) is
proposed and combined with the orientation algorithm to find
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the complete pose.
This paper explains these techniques in roughly the same

order they would typically be performed. First, a method of
finding the silhouette will be described. It outputs point cor-
respondences that are needed by both of the other algorithms.
This data can be directly used for determining if the sequential
images contain multiple bodies. Further inspections can be
performed by incorporating the satellite’s known shape.

II. SILHOUETTE OF MAN MADE, ERRATICALLY
ILLUMINATED OBJECTS IN SPACE

This paper seeks to develop a technique for silhouetting
which builds on existing methods, but modifies them to be
especially robust when finding point or line correspondences
on man made objects under the erratic illumination found in
space. This may include partial illumination, zero illumination
against a star filled background, harsh illumination, and bright
reflections. The method is inspired by contour (or snake)
growing ([17], [14], [1]), but exploits the inherent straight line
structure dominant in man made objects such as satellites, as
well as the specular nature of the star filled background. Rather
than fitting an arbitrary contour around an object, it forms a
contour from line segments. The length and number of the
segments is iteratively adapted to fit the measurements.

A brief outline of the steps are as follows:

1) Place an initial, small polygon inside the object’s image.
Store it as a list of vertex points proceeding in a counter-
clockwise direction around the polygon.

2) Eliminate a vertex if the line between adjacent vertices
is shorter than the desired resolution.

3) Add vertices to keep each edge a length ld or shorter.
4) Create a set of points along a straight line edge between

vertices. If a point is inside the object, then perturb that
point outward along the edge normals. Repeat this for
all edges along the polygon.

5) Fit lines to these perturbed points along each edge.
6) Create new vertices by intersecting non-collinear adja-

cent lines.
7) Check for convergence, returning to step 2 until conver-

gence takes place.

The steps will now be covered in more detail.

A. Step 1: Place an initial, small polygon inside the object’s
image. Store it as a list of vertex points proceeding in a
counter-clockwise direction around the polygon.

An initial point inside the object’s image can be found
by creating a mask which encodes the object’s rough shape,
then moving it over the image until the best fit is found.
The centroid of the mask giving the best match is the initial
point. A small circular polygon (like a hexagon or octagon)
is then placed inside the object, centered at the initial point.
The number of sides in this initial polygon is not especially
important, as vertices will be added and removed during
the iterations to enforce edge length and non-collinearity
specifications.

B. Step 2: Eliminate a vertex if the line between adjacent
vertices is short.

Let ~dj and ~dj+1 (both in R2) denote two adjacent vertices.
The length of edge j can be found from lj = ||~dj+1 − ~dj ||.
If this length is below the desired resolution (lmin), then
vertex j + 1 is dropped from the list of vertices. This process
intentionally limits the resolution of the contour fit, which is
useful, for instance, to prevent noise from creating false edges.

C. Step 3: Add vertices to keep each edge a length ld or
shorter.

Let ld be a desired target length for each edge. If lj > ld,
then a new vertex can be introduced between ~dj and ~dj+1

at the midpoint. This is performed by inserting the additional
vertex, (~dj + ~dj+1)/2. The length of this segment (from ~dj

to the new ~dj+1) can then be evaluated, and if larger than
ld, another vertex can be added at the midpoint of ~dj and
the newly created ~dj+1. This process is repeated until the
length between ~dj and the next vertex is less than ld, then
j is incremented. The distance between the (possibly newly
created) vertex j + 1 and the (possibly newly created) vertex
j+2 is compared to ld, and so forth. The process repeats until
all edges have a length less than ld.

In the next step, new edges will be found by perturbing
points along each edge until they reach the boundary, then
fitting a line to each edge from these perturbed points. By
keeping the edges from growing too large, excessive averaging
is avoided, thus allowing the contour to conform to the
boundary.

D. Step 4: Create a set of points along a straight line edge
between vertices. If a point is inside the object, then perturb
that point outward along the edge normals.

The unit vector pointing between adjacent vertices is

~v =
~dj+1 − ~dj

||~dj+1 − ~dj ||
Points, ~x, along this line segment can be created by ~x = ~dj +
α~v where α is between 0 and the length of the line segment, lj .
Let ~u denote the outward pointing normal. Since the vertices
are in a counter-clockwise direction, the cross product ~u × ~v
is positive. This implies that

~u =
[

v2

−v1

]

The points can then be perturbed along the edge normal by

~x + (p(I(~x)|O)− p(I(~x)|B))g~u → ~x (1)

where p(I(~x)|O) denotes the probability that intensity I(·)
occurs at location ~x, given that the point lies on the object,
p(I(~x)|B) denotes the probability that intensity I(·) occurs at
location ~x, given that the point lies on the background, and g
is a positive scalar gain.

Since the polygon is initially placed somewhere deep inside
the object, initially it is desirable to have a large gain, g,
that will perturb the data points several pixels per iteration.
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Once the edges approach the boundary, then the gain should
be reduced so that a fine convergence to the edges will result.
There are many possible functions which perform this action.
One method is to make g a function of the iteration number,
decreasing it linearly as the iterations proceed. Another method
is to make g a function of e = p(I(~x)|O) − p(I(~x)|B); e is
between -1 and 1. Since the polygon is initially inside the
object, e starts at e = 1. Once the polygon is close to the
boundary, e → −1. To begin with a large gain, gmax, which
exponentially decreases with e and ends (when e = −1) with
the small gain, gmin, let

g(e) = a + ebe (2)

where

b = arcsinh
gmax − gmin

2
, a = gmax − eb (3)

The star-filled backdrop in space images creates unique
problems as well as opportunities. When the satellite is illumi-
nated, the main problem is the stars act as a source of noise,
making it hard to tell (at distinct points) where the spacecraft
ends and the stars begin. The straight line averaging explained
in the next section has proven robust to this noise.

On the other hand, the satellite is back lit by stars, thus
it forms a (dark) image when it is not illuminated by the
sun. This provides an opportunity to image the silhouette even
without the sun’s illumination. Consider a binary image where
pixels equaling 0 are black and 1 are white. Under these
circumstances, the complement of the un-illuminated satellite
image will be white. However, the noise level will also be
complemented. If the sky in the field of view has a fraction
of the total area (pstars) containing stars, then the fraction of
the background containing noise in the un-illuminated case is
1 − pstars. Since pstars is typically ¿ 1, this creates a high
level of noise. To handle this, a layer within the boundary can
be checked and penalized for the presence of noise. Simply
check points parallel to the edge between vertices j and j +1,
but inside the area. If a point is believed to be from the
background, rather than the object, then perturb that point
inward, and incorporate it in the list of line fit points. Let
pw be the width of a pixel, and nbl be the desired boundary
layer depth (in pixels). The steps are then as follows:
• For i = 1 to nbl:

– Create points ~x = ~dj + α~v − ipw~u, α ∈ [0, lj ].
– If p(I(~x)|O) − p(I(~x)|B) < 0, then perturb the

points as in (1), ~x+(p(I(~x)|O)−p(I(~x)|B))g~u → ~x,
and incorporate them in the data points used to fit a
line between vertices j and j + 1.

E. Step 5: Fit lines to these perturbed points along each edge.

This is a standard weighted least squares problem in the
plane. The weighted least squares fit to the line ~uT

j ~x = bj

between vertices j and j + 1 can be found from the points
along this line, ~xk, by calculating

~̄xw =
1
n

n∑

k=1

wk~xk

M =
n∑

k=1

wk~xk~xT
k − n~̄xw~̄x

T
w

where n is the number of perturbed points between vertices
j and j + 1 and wk is the weight on the kth perturbed point.
The unit normal, ~uj , is then the eigenvector corresponding to
the minimum eigenvalue of M and

bj =
n~̄x

T
w~uj∑n

k=1 wk
(4)

Since M is only a 2 × 2 matrix, the eigenvalue problem can
be explicitly solved to speed the calculations.

Points on the object are given a weight of one (wk = 1),
while any point statistical believed to be on the background
(p(I(~x)|O) − p(I(~x)|B) < 0) is given much higher weight,
wb. Our experiments indicate that at least ten times higher
weight on background points is useful for making the lines
converge along the boundary.

F. Step 6: Create new vertices by intersecting non-collinear
adjacent lines.

Let θ be the angle between normals ~uj and ~uj+1. Then
~uj+1 = Rz~uj , where

Rz =
[

cos θ − sin θ
sin θ cos θ

]

is a rotation matrix about the “z” axis. Let

Aj =
[

~uj ~uj+1

]
=

[
~uj Rz~uj

]

The singular values of Aj are by definition the square root of
the eigenvalues of AT

j Aj . Because ~uj is a unit vector, AT
j Aj

can be written as

AT
j Aj = I + ~uT

j Rz~ujI
⊥

where
I⊥ =

[
0 1
1 0

]

The eigenvalues of I⊥ are ±1, thus the eigenvalues of AT
j Aj

are 1±~uT
j Rz~uj . Since ~uj is a unit vector and Rz is a rotation

matrix, ~uT
j Rz~uj = cos θ, thus the singular values of Aj are√

1 + cos θ,
√

1− cos θ. The condition number of Aj is the
ratio of the maximum and minimum singular values,

cond(Aj) =
√

1 + cos θ√
1− cos θ

(5)

For small angles between adjacent edges, Aj becomes very
poorly conditioned (cos θ → 1 =⇒ cond(Aj) → ∞). As
the next section will show, this implies from (6) that vertex
j + 1 will be poorly estimated. To avoid this problem and
simultaneously combine edges that are nearly collinear, cos θ
can be found from cos θ = ~uT

j ~uj+1. If cos θ < t, where t is a
threshold less than 1, then a new vertex is found by intersecting
lines j and j + 1. The new vertex, ~dj+1, is the intersection of
the lines ~uT

j ~x = bj and ~uT
j+1~x = bj+1. Substituting ~dj+1 = ~x

into these two equations and solving for ~dj+1 yields

~dj+1 =
[

~uj ~uj+1

]−T
[

bj

bj+1

]
= A−T

j

[
bj

bj+1

]
(6)
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If the adjacent lines have nearly the same normal, but are
translated, then instead of intersecting the two lines, place the
new vertex at the point nearest the old vertex on the new line.
That is, if cos θ > t and |bj − bj+1| > pt, then add the vertex
(I − uj+1u

T
j+1)~dj+1 + bj+1~uj+1. The constant pt is a given

threshold.
Because the new list of vertices enforce collinearity con-

straints, the distance between vertices may be much larger
than ld, and correspondingly, the number of vertices in the
new list may be much smaller than the number of vertices
found after step 3. This successive process of expanding, then
contracting the number of vertices allows fine features to be
extracted, while simultaneously automatically outputting the
longest straight edges.

G. Step 7: Check for convergence, returning to step 2 until
convergence takes place.

Convergence can be evaluated by finding the normed change
in vertex locations. Once the number of vertices has stabilized,
they can be stacked in a vector ~d = [~dT

1
~dT
2 . . . ~dT

n ]T .
The weighted norm of the difference in this vector between
iterations is a useful metric for determining convergence. Until
it is sufficiently small, return to step 2.

H. Establishing the Correspondence

Once the straight line outline of the object is found using the
above highly robust method, the correspondences between the
vertices found in the image and those in a CAD model can
be found. For satellites, a very coarse estimate of the pose
is known from mission requirements. For instance, the solar
arrays must face the sun. This knowledge can be used to find
which vertices should appear in the image, and in what order.

III. DETECTION OF INDEPENDENTLY MOVING BUT
VISUALLY OVERLAID OBJECTS.

There exists a need to detect an unwanted “chaser” space-
craft maneuvering or orbiting around a satellite. This problem
can be broken into two cases:

1) The chaser’s image is distinct from that of the satellite.
2) The chaser and satellite’s images are blurred together,

so they are visually overlaid.
In the first case, it is relatively straightforward to detect the
presence of the unwanted chaser through a variety of motion
analysis techniques. Consequently, it will not be considered
herein. The second case, in contrast, can be difficult: are the
changes in the image over time just due to motion of the
satellite, or is a chaser present and accounting for some of the
blurry image’s changes? The image may be very blurry simply
because of the distances involved, the available telescope,
atmospheric effects, or poor (perhaps even totally missing)
illumination. This section will develop a first level screening
procedure which can very quickly indicate the presence of
a possible chaser. Once this detection has occurred, further
resources can be allocated (more processing, better telescopes,
human visual inspection, better illumination and atmospheric
seeing windows, etc.).

The new technique does not require detailed knowledge
of the satellite’s shape or motion, but is a simple method.
More complex algorithms incorporating knowledge of satellite
shape are derived in the next section. From successive images,
this new, simple method finds the dimension of the subspace
spanned by the motion in the image. If the dimension is higher
than that explained by the satellite’s motion alone, then a
chaser may be present.

The new method is inspired by robotic motion segmentation
algorithms [18]. Suppose the satellite has n points that are
seen on all of the F image frames. Let the jth satellite
point be denoted as pj (j = 1 . . . n). Let g be the 4 × 4
homogeneous coordinate transformation from the satellite’s
coordinate system, S, to the camera’s coordinate system, C.
Then [5] [

Cpj

1

]
= g

[
Spj

1

]
(7)

where the prescripts C and S denote that the point is measured
in the C and S coordinate systems, respectively. Denoting

[
pj

1

]
= p̄j

equation (7) can be written more compactly as

C p̄j = gS p̄j (8)

Key fact: At a given time, the same g is used to transform
all points on the satellite into camera coordinates.

Let the camera have a focal length of f , and let the satellite
be at a distance z. If the camera’s axis is the z axis, then the
image plane position of pj in the ith frame is

dij =
f

z

[
I2 0

]
C p̄j

Note that this equation assumes that the distance from the
camera to the satellite is much larger than the size of the
satellite, so minor differences in the distance from the camera
to a point on a satellite caused by that point’s location on
the satellite are irrelevant (affine camera model). The affine
camera model is highly accurate when imaging objects from
Earth to space, as the distance is hundreds of kilometers even
for low Earth orbits. From (8),

dij =
f

z

[
I2 0

]
gS

i p̄j (9)

where the i subscript on g denotes the homogeneous coordi-
nate transformation when the ith frame is taken. Denote the
2× 4 transformation matrix as

Mi =
f

z

[
I2 0

]
gi

Equation (9) then becomes

dij = MS
i p̄j

Let the n points be tracked from one frame to the next over
i = 1 . . . F frames. Then the ith row of the data matrix, D =
{dij} is

Mi

[
S p̄1

S p̄2 · · ·S p̄n

]
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Denote the 4× n post-multiplying matrix as SP ,

SP =
[
S p̄1

S p̄2 · · ·S p̄n

]

Finally,

D =




M1

M2

...
MF




︸ ︷︷ ︸
2F×4

SP︸︷︷︸
4×n

(10)

Equation (10) shows that the data matrix, D = {dij} can
be decomposed into two matrices multiplied together. Since
image data is two dimensional, the first matrix has dimension
2F×4, while SP is 4×n. As the rank of a matrix is less than or
equal to the smallest dimension of its factors, the rank of D is
less than or equal to four. This is a surprising result, as D may
be a very large matrix if many points are tracked across many
frames. If only rotations are present, then a similar analysis
can be used to show that the rank of D is less than or equal
to three.

When the real data is collected, some of the points may not
in actuality be located on the satellite–they could, for instance,
lie on a chaser vehicle. In this case, the above arguments no
longer hold, and the dimension of D can exceed four. This
implies that the dimension of the data matrix can be used as a
detection criteria–if it exceeds four, then a chaser may possibly
be present, so further investigations are merited.

Note that this detection algorithm is very simple to imple-
ment, as it requires no knowledge of the satellite. Moreover,
point correspondences are only required between frames. This
is comparatively simple, since image points typically don’t
move much over a single sample time, thus finding two corre-
sponding points is simplified. To implement the algorithm, the
measurements must simply be collected in a single matrix, D,
where each column contains the image positions of a single
satellite point as it appears in different images. The rank of D
is calculated to detect multiple moving bodies.

IV. DETECTION OF EXTRANEOUS OR MISSING OBJECTS

The simple technique in Section III is very useful for
many scenarios, but it can be improved by including more
knowledge. This section assumes that a solid model of the
satellite’s shape is available, and uses that knowledge to
compare the obtained image with predictions of what the
image should look like. Gross differences indicate an anomaly.

This section briefly reviews pose estimation results found
in [12]. The proofs and further details (including methods for
evaluating the estimation error and viewpoint) are in [12].
From a noisy, diffraction limited image of a known satellite
in an unknown pose, the pose will be estimated. The CAD
model can then be placed in the same pose and projected onto
two dimensions to create a synthetic prediction of what the
satellite’s image should look like. Subtraction of the actual
image from the synthetic image produces a signal useful for
automatically checking any satellite anomalies.

First, the estimation of orientation alone will be treated.
Define the hat function (̂·) as the cross product matrix, i.e.

~̂z =




0 −z3 z2

z3 0 −z1

−z2 z1 0




Theorem 1: Given ~zi, ~vi ∈ R3 and wi ∈ R+, i = 1 . . . n,
the minimum of

J =
n∑

i=1

wi||R~zi − α~vi||2 (11)

over R ∈ SO(3), α ∈ R+ is found by first calculating

D =
n∑

i=1

wiK(~vi, ~zi) (12)

where K is the bilinear, symmetric matrix function

K(~v, ~z) =

[
~v~zT + ~z~vT − 2~vT~zI ~̂z~v

(~̂z~v)T 0

]
(13)

The eigenvector, ~ε, of D corresponding to the maximum
eigenvalue is the unit quaternion representation of the optimal
R. The optimal scaling is

α =
∑n

i=1 wi~v
T
i R~zi∑n

i=1 wi||~vi||2 (14)

2

Orientation estimation from 2-d data does not enjoy the
invariance to scaling found in Theorem 1, so the case where
scaling is known will be solved, then scaling will be estimated
separately.

Proposition 2: Given ~zi ∈ R3, ~di ∈ R2, and wi ∈ R+,
i = 1 . . . n, P = [I2 0] the minimum of

J2d =
n∑

i=1

wi||PR~zi − ~di||2 (15)

over R ∈ SO(3), is found by first calculating

~vi =




~di

· · ·
±

√
||~zi||2 − ||~di||2


 , i = 1 . . . n (16)

Next, the 2n 3-d orientation problems corresponding to all
possible vi, i = 1 . . . n ± sign choices are solved using
Theorem 1:

min
R∈SO(3)

n∑

i=1

wi||R~zi − ~vi||2

From these 2n solutions, the optimum is that minimizing J2d.

2

Lemma 3 will now show how these results can be brought
together to estimate orientation from 2-d measurements with
unknown scaling.

Lemma 3: Given ~zi ∈ R3, ~di ∈ R2, and wi ∈ R+, i =
1 . . . n, P = [I2 0] the minimizer of

J =
n∑

i=1

wi||PR~zi − α~di||2 (17)
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over R ∈ SO(3), α ∈ R+, is approximated by first estimating
α by αe = 1

maxi=1...n ||~di||/||~zi||
. R can then be estimated

by replacing all measurement vectors ~di with scaled versions
~di 7→ αe

~di, i = 1 . . . n, and applying Prop. 2.

2

Finally, to estimate both orientation and position, use Prop.
4.

Proposition 4: Given data points ~zi ∈ R3 and correspond-
ing sensed points ~qi ∈ R2, along with weightings wi ∈ R+,
i = 1 . . . n, P = [I2 0], the minimizer of

J =
n∑

i=1

wi||P [R~zi + ~p]− α~qi||2 (18)

over g = (R, ~p) ∈ SE(3) (R ∈ SO(3), ~p ∈ R3), and α ∈ R+

can be estimated by forming the free vectors ~zij = ~zi − ~zj ,
~dij = ~qi − ~qj , i, j = 1 . . . n. R and α can then be estimated
using Lemma 3 by replacing ~zi by ~zij and ~di by ~dij . The first
two components of ~p are estimated by

[
px

py

]
= ~pa = P~p =

α
∑n

i=1 wi~qi −Ra

∑n
i=1 wi~zi∑n

i=1 wi
(19)

where Ra denotes the 2 × 3 matrix consisting of the first two
rows of R. When the measurements arise from an optical sys-
tem with focal length f , and pz denotes the third component
of ~p, and if the imaging is affine (||~zi|| ¿ pz for all points
i = 1 . . . n), then

pz ≈ αf (20)

2

V. SIMULATION RESULTS

Figures 1 and 2 illustrate the silhouettes obtained using a
standard gradient (Sobel) operator for both the sun illuminated
and un-illuminated (only back lit) cases. While the Sobel
operator performs well when the satellite is illuminated, it
completely fails without illumination.

The new SSLS method, on the other hand, is able to find
the silhouette (Fig. 3). Table 4 documents the parameters used
in this simulation.

Figure 5 illustrates a sequence of diffracted images con-
taining both the satellite and a chaser in a nearby relative
orbit. The + signs indicate points that are tracked between
each image, while the circled + signs indicate those points
due to the chase vehicle. The satellite’s translational motion is
tracked, so only rotations are present in the image. A data
matrix, D, is formed where each column lists the image
plane positions of a single point. Since only rotations are
present, a single rigid body ideally has rank(D) of at most
three. When all eight columns are included, the singular
values are: (347.28, 75.33, 31.48, 3.35, 0.69, 0.51, 0.23, 0.14).
If the two columns corresponding to points on the
chaser are excluded, then the singular values become:
(307.55, 73.49, 1.32, 0.63, 0.48, 0.19). In the later case, the
rank should be at most three, since all the data points stem
from a single rigid body. However, the rank is greater than
three in this realistic simulation due to noise and imperfect

Illuminated Satellite
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Silhouette of Illuminated Satellite: Sobel Operators
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Fig. 1. The illuminated satellite (top), and its silhouette found using gradient
masks (bottom).

correspondences. Nevertheless, the third and higher singular
values in the multiple body case are significantly larger than
those in the later, single body case–a discernable difference
that can be wisely used as an indication of multiple body
presence.

From a noisy, diffraction limited image of a known satellite
in an unknown pose, the pose will be estimated. The CAD
model can then be placed in the same pose and projected onto
two dimensions to create a synthetic prediction of what the
satellite’s image should look like. Subtraction of the actual
image from the synthetic image produces a signal useful for
automatically checking any satellite anomalies.

Fig. 6 depicts a hypothetical satellite. The far corners of the
solar arrays are chosen as the data points (~zi, i = 1, . . . , 4,
depicted as 0’s), as they produce an easily identifiable signa-
ture. As the satellite moves, several images are captured (Fig.
7). The pose will be estimated and the satellite inspected for
images 1 and 4 (1 is the leftmost).

Because satellites orbit at significant distances from the
Earth, the actual image is degraded appreciably by diffraction
effects (see Fig. 8). Using a binary thresholding technique, it
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Un−illuminated Satellite with Parasite
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Silhouette of Un−Illuminated Satellite: Sobel Operators
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Fig. 2. The un-illuminated satellite image (top), and its gradient (bottom).
The silhouette is not found.

Silhouette of Un−Illuminated Satellite: Straight Line Snakes
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Fig. 3. The silhouette is found using the SSLS method.

nits ld lmin nbl wb t g pt
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Fig. 4. Parameters used in the SSLS method. Fig. 5. A sequence of diffracted images, and the tracked correspondence
points.
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Fig. 6. CAD model of the imaged satellite, with O’s denoting the point
correspondences.

Sequence of Satellite Images.
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Fig. 7. As the satellite sweeps across the sky, several images are captured.

is enhanced, and the solar array corners in the image (~qi) are
found (Fig. 9).

Despite the effects of diffraction, thresholding, and pixel
round-off, the pose estimate is quite accurate, producing an
angular estimation error of only eθ = 5.3o. A thresholded ver-
sion of the predicted image is subtracted from the thresholded
measured image (Fig. 9) to produce the inspection image (Fig.
10). Although it suffices for our present purposes, an improved
match can certainly be obtained from this subtracted image by
employing, for example, the methods in [7] to fine tune the
estimate.

Automatically determining the point correspondences ~qi can
be difficult. These simulations first find a point inside the
satellite by a very coarse template matching strategy. Then,
a statistical snake [14] grown from that initial point robustly
identifies the perimeter. Finally, vertices along that perimeter
are extracted (see [13] for further details). Figures 11 and 12
illustrate the results on image 4. In this case, eθ = 25o.

VI. CONCLUSIONS

This paper develops three new, interconnected techniques
useful for the autonomous distant visual surveillance of satel-
lites. First, silhouetting of man made, erratically illuminated

Diffracted Image
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Fig. 8. The first raw, diffracted image.

Satellite Image and its Estimated Vertices (o)
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Fig. 9. The first image with the sensed points, ~qi, denoted by (0).

Matched Image minus Measured−−gray means match is good
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Fig. 10. Combining pose estimates with the CAD model, a predicted image
is calculated and subtracted from the measured image.
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Satellite Image and its Estimated Vertices (o)
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Fig. 11. The fourth image, with its points ~qi denoted by (0). The outside
perimeter is identified by statistical snakes.

Matched Image minus Measured−−gray means match is good
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Fig. 12. Combining pose estimates with the CAD model, a predicted image
is calculated and subtracted from the fourth measured image.

satellites is performed. Illumination cases include full sun from
an arbitrary (often awkward) viewing angle and un-illuminated
(back-lit by the star field). New Statistical Straight Line Snakes
(SSLS) prove efficient in finding the silhouette, even in the
un-illuminated case. In contrast, gradient techniques based on
the Sobel operator fail utterly. The silhouette is composed
of straight line segments, which are easy to calculate, fit
the straight lines inherent in man made objects, and lend
themselves to further processing (pose estimation, template
matching, etc.) A current silhouette can be used as an initial
guess to speed silhouette tracking between successive images.
Once the silhouette has been used to find correspondence
points, a second method for detecting a moving, nearby
chaser vehicle is derived. The hard case is treated in which
the chaser and satellite are so nearby that their images are
blurred together. The algorithm finds the dimension of motion
generated by the sequence of images. If the dimension is

higher than that explained by a single rigid body, then this
indicates a possible chaser. No knowledge of the satellite or
chaser’s shape or motion is required. Simulations indicate
discernable differences in the singular values obtained with
one versus two bodies present.

Independent relative motion between the satellite and chaser
is required–if the chaser is immobile with respect to the
satellite, then a third technique must be used. This third
method incorporates the satellite’s solid model to estimate
its pose from a noisy, diffraction limited image. The pose
is then combined with the solid and optical model to create
synthetic expected images. Inspection is performed by com-
paring these with the actual images. The new pose algorithm
first estimates depth by a least upper bound technique. A
fast method is derived of optimally estimating the rotation
matrix by a sequence of analytical solutions (rather than a
nonlinear numerical optimization!). Simulations illustrate a
satellite inspection from Earth to low Earth orbit.
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